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Abstract. Stochastic gradient descent (SGD) is a crucial optimisation
algorithm due to its ubiquity in machine learning applications. Paral-
lelism is a popular approach to scale SGD, but the standard synchronous
formulation struggles due to significant synchronisation overhead. For
this reason, asynchronous implementations are increasingly common.
These provide an improvement in throughput at the expense of introduc-
ing stale gradients which reduce model accuracy. Previous approaches to
mitigate the downsides of asynchronous processing include adaptively
adjusting the number of worker threads or the learning rate, but at their
core these are still fully asynchronous and hence still suffer from lower
accuracy due to more staleness.
We propose Interval-Asynchrony, a semi-asynchronous method which re-
tains high throughput while reducing gradient staleness, both on average
as well as with a hard upper bound. Our method achieves this by intro-
ducing periodic asynchronous intervals, within which SGD is executed
asynchronously, but between which gradient computations may not cross.
The size of these intervals determines the degree of asynchrony, provid-
ing us with an adjustable scale. Since the optimal interval size varies
over time, we additionally provide two strategies for dynamic adjust-
ment thereof. We evaluate our method against several baselines on the
CIFAR-10 and CIFAR-100 datasets, and demonstrate a 32% decrease in
training time as well as improved scalability up to 128 threads.

Keywords: Parallel Algorithms · Parallel SGD · Staleness · Asyn-
chronous Data Processing

1 Introduction

Stochastic gradient descent (SGD) is a classic and widely used algorithm for
optimising the parameters of some model to minimise a given loss function by
iteratively computing its gradient with respect to the current parameters. In the
simplest sequential formulation, a series of iterations are carried out following
θi+1 ← θi − η∇LBi

(θi) [15], where θi is the parameter vector of the model
following iteration i; LBi

(θi) is the target function which evaluates the loss of
the model given parameters θi evaluated on a minibatch Bi of training samples;
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and η is the learning rate, controlling the impact of an individual gradient. Each
minibatch Bi consists of a subset of samples from the entire training dataset.

The convergence rate of SGD can be increased through data-parallelism.
Data-parallel SGD is traditionally formulated synchronously: workers run in
lockstep with each other, at each iteration i computing a gradient from a subset
of Bi. Between steps all workers synchronise, and their individual gradients are
aggregated and used to update θi. Semantically, this is exactly equivalent to
the aforementioned sequential formulation [2, 9] (which itself has desirable con-
vergence properties even for certain non-convex optimisation problems, such as
training deep neural networks [12,15,20]).

Unfortunately, synchronous parallel SGD does not scale well to large numbers
of threads. Since steps are processed in lockstep, a thread which finishes its
gradient computation early can do nothing but sit idle until all the others finish
too. This can significantly reduce the throughput (i.e. the number of training
samples processed per unit time) leading to slower convergence.

In order to better utilise the CPU, many machine learning algorithms, frame-
works, and software libraries make use of asynchronous processing [2–4, 14, 18].
This relaxes the semantics of the sequential SGD formula; specifically, threads
are allowed to apply their computed gradients to the model independently as
soon as they are finished, immediately starting a new step afterwards. In this
way, the gradient used to compute θi+1 is no longer necessarily based on θi. In-
stead, asynchronous updates follow θi+1 ← θi− η∇LBi

(θi−τi). Here, τi refers to
the staleness of step i, i.e. the number of intermediate versions the parameters θ
have gone through since the state that was used to compute this gradient. Higher
values of τ correspond with worse statistical efficiency, defined as the improve-
ment in training loss per step (dL

di ). E[τ ] increases linearly with the number of
threads, and therefore plain asynchronous SGD does not scale well. When con-
sidering synchronous vs. asynchronous execution, we can either achieve scalable
throughput or good statistical efficiency, but not both at the same time.

Previous efforts [2–4, 13, 19] to manage this trade-off include dynamically
adjusting the number of active worker threads and the training batch size, as
well as scaling the impact of gradients based on observed staleness. These all
demonstrate impressive performance, recovering from the impact of stale updates
by adaptively adjusting different parameters in response – either explicitly or
implicitly – to the distribution and effect of staleness. We consider an orthogonal
approach in which the synchronisation semantics are adjusted such that the
actual distribution of staleness is improved. Our contributions are as follows:

– We propose a novel semi-asynchronous execution strategy, Interval-
Asynchrony, which results in shorter convergence time for high-parallelism
SGD.

– We propose and evaluate strategies for setting Interval-Asynchrony’s interval
size; in particular, we describe an online probing method which aims to
dynamically optimise the interval size during a single execution.

– We provide a comprehensive evaluation of our method against two baseline
asynchronous approaches and one synchronous one.
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The rest of this paper is organised like so: in Section 2 we give an outline
of some related work, which helps to motivate our algorithm described in the
following Section 3. There we explain the algorithm from a conceptual point of
view and provide an efficient lock-free implementation. In Section 4 we discuss in
more detail the effect of the interval size and suggest methods by which it can be
chosen and adjusted. Section 5 provides a comprehensive evaluation of Interval-
Asynchrony, primarily by comparing its convergence rate against a number of
baseline methods.

2 Related Work

Elastic Parallelism. Recent work [3] demonstrated that an effective way to in-
crease the convergence rate for asynchronous parallel SGD is through dynami-
cally adjusting the number of active worker threads. This work observes that the
optimal number of threads varies throughout an execution; much lower staleness
is typically required closer to convergence. Their strategy attempts to finds the
time-varying optimal number of threads using probing to estimate the conver-
gence rate of candidate values.

While this was shown to provide a significant speed-up in many cases, a
downside of this type of method is that it does not facilitate scalability above
the maximum number of threads that it deems optimal.

Staleness Adaptiveness. Instead of adapting the number of workers, some works
have proposed different ways to adjust the learning rate, either over time [7]
or based on measured staleness [4]. Additionally, a technique was proposed for
distributed parallel SGD which relaxes the synchrony in a way similar to asyn-
chronous SGD, while also reducing gradient staleness [10].

Concurrent Model Access. Threads performing asynchronous SGD contend for
access to the shared global model. The naïve implementation involves using a lock
to ensure mutual exclusion for shared model access, guaranteeing consistency
at the expense of throughput. The Hogwild! algorithm [14] takes a different
approach, giving threads unrestricted concurrent access to the shared model.
Although Hogwild! introduces inconsistency when updating the model, it is
proven to converge in general given bounded staleness [14, 17]. Additionally,
atomic operations such as Compare-and-Swap have been used to provide lock-
free consistent model updates [1, 5].

3 Interval-Asynchronous Execution

Our main contribution is a thread scheduling and synchronisation algorithm
called Interval-Asynchrony. In this section we give a description of Interval-
Asynchrony and justify its design with respect to scalability. We then discuss
various online methods for selecting values for the asynchrony interval size.
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Algorithm 1 One SGD Worker wid, illustrating invocation of the Dispatcher
1: while !IsFinished() do
2: can_start, i← TryStartStep(wid)
3: if can_start then ▷ Dispatchers may be restrictive about start conditions.
4: θlocal ← θglobal ▷ Make a local copy of the model state.
5: Bi ← GetBatch(i) ▷ Retrieve the ith batch of training data.
6: gi ← ∇L̃Bi(θlocal) ▷ The “slow” part – computing a gradient.
7: if FinishStep(wid, i) then ▷ If the Dispatcher allows it. . .
8: θglobal ← θglobal + ηgi ▷ . . . we apply our gradient to the global model.
9: end if

10: end if
11: end while

In order to make the best use of the available threads while limiting the
impact of stale updates, our strategy lets us smoothly adjust the degree of asyn-
chrony. We achieve this by logically splitting the execution into intervals, during
which threads execute SGD asynchronously, and between which synchronisation
occurs. We introduce a parameter called the asynchrony interval, which is the
number of SGD steps that make up one such interval. We call this value y.

In order to describe Interval-Asynchrony, we first introduce the concept of a
Dispatcher. A Dispatcher is an interface which exposes two functions to worker
threads. TryStartStep(wid) determines whether a given thread with id wid

may begin a step, and FinishStep(wid, i) determines whether the gradient com-
puted by a given step i is allowed to be applied to the model. TryStartStep
returns a pair: a boolean value for whether the step may begin, and a step
start index, i. FinishStep simply returns a boolean for whether a certain step’s
gradient is accepted or rejected. Accepted steps’ gradients are processed like
normal, i.e. used to update the global set of parameters, whereas the gradient
of a rejected step is simply discarded.

Workers interact with the Dispatcher according to Algorithm 1. The function
IsFinished decides when the entire execution has finished; this may be based on
time, number of epochs, or model performance. We use Hogwild!-semantics [14]
for concurrent global model updates (Line 8 ), such that multiple model updates
can be interleaved.

Pseudocode for an efficient implementation of our Interval-Asynchronous Dis-
patcher is given in Algorithm 2. The variables Ifirst and Idone keep track of the
state of the current asynchronous interval; they are the step start index which
initiated the interval and the number of steps that have been accepted so far
during the interval, respectively. sstarted is the total number of steps started,
and sdone is the number of steps that have been accepted by the Dispatcher.

The implementation of TryStartStep is straightforward because steps may
begin unrestricted. Still, we have to make sure that the thread is within the
current parallelism bound (wid < m, where m is the number of active threads).
This condition is not strictly necessary for Interval-Asynchronous execution, but
we include it anyway since it allows for runtime adjustment of the number of
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Algorithm 2 Interval-Asynchronous Dispatcher

1: Ifirst ← 0 ▷ Interval’s first step
2: Idone ← 0 ▷ Interval’s accepted count
3: sstarted ← 0 ▷ Total steps started
4: sdone ← 0 ▷ Total steps completed
5: y ← y0 ▷ Initial interval size

6: function TryStartStep(wid)
7: if wid ≥ m then
8: return false, −1
9: else

10: return true, FAA(sstarted, 1)
11: end if
12: end function

13: function UpdateInterval(y)
14: return y − 1 ▷ Simple y-decay
15: end function

16: function FinishStep(wid, i)
17: if i < Ifirst then
18: return false
19: end if
20: repeat
21: old← Idone

22: if old ≥ y or i < Ifirst then
23: return false
24: end if
25: new ← old+ 1
26: until CAS(Idone, old, new)
27: if new = y then
28: y ← UpdateInterval()
29: Ifirst ← sstarted
30: Idone ← 0
31: end if
32: FAA(sdone, 1)
33: return true
34: end function

threads, m, highlighting the versatility of the Dispatcher interface and demon-
strating how our method can be integrated with existing techniques (specifically
ElAsyncSGD). The use of fetch-and-add (FAA) atomically increments sstarted
and returns its prior value.

The FinishStep implementation for Interval-Asynchrony checks if a certain
SGD step is contained entirely by the current interval and, if required, ends
the current interval and sets up the next one. A step is contained by the cur-
rent interval iff i ≥ Ifirst and Idone < y. We use compare-and-swap (atomic
Idone ← new iff Idone = old, returning true on success) to ensure consistency
when checking the above two conditions and incrementing Idone. This approach
is more scalable than a simpler implementation with a lock around FinishStep.
new refers to the order in the current interval with which this step finished.
When an accepted step finishes an interval (new = y), we start the next one
by updating Ifirst. We also provide the option of changing the size of the next
interval with UpdateInterval. In Section 4.1 we justify why and how we may
wish to do so.

Values for y can be any integer. Higher values of y bring the execution closer
to fully asynchronous semantics (and of course if y ≥ starget, where starget is the
total number of SGD steps we wish to run, then the entire execution fits within
just one interval, which is then exactly equivalent to asynchronous execution).
On the other hand, y = 1 is not exactly the same as synchronous data-parallel
execution; instead, it is semantically similar to a sequential execution. In prac-
tice, we select values for y somewhere between these two extremes.
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Fig. 1: One interval within an
Interval-Asynchronous execution.
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An illustrative example of Interval-Asynchronous execution is shown in Fig-
ure 1. The shaded rectangle refers to one asynchronous interval with y = 4. Each
row depicts the execution of one thread (hence m = 4 = y, in this case), within
which each line depicts the start index and end order of one step. Lines termi-
nating in a circle represent steps whose gradient was accepted by the Dispatcher,
whereas those ending in a cross were rejected.

The scalability of an algorithm describes the performance benefit of using
additional threads in parallel to execute it. Plain synchronous and asynchronous
SGD both struggle to scale to high thread counts, although for different reasons:
the former suffers significant overhead due to between-iteration synchronisation,
while the latter eliminates synchronisation overhead at the expense of unbounded
staleness, reducing the effectiveness of individual iterations.

Interval-Asynchrony is similarly able to reduce the synchronisation-induced
overhead, in part due to the asynchronous execution within each interval. The
other reason is that the synchronisation points (i.e. interval boundaries) don’t
cause threads to wait in the same way that they do between iterations of syn-
chronous SGD: a new interval begins as soon as enough gradients are accepted
in the previous one, and so threads don’t need to wait for each other. On the
other hand, while Interval-Asynchrony does induce stale gradients, the expected
staleness of a given gradient is significantly less than that of asynchronous exe-
cutions. For these reasons, we expect that Interval-Asynchrony will scale up to
a higher number of threads than either synchronous or asynchronous SGD.

4 Asynchronous Interval Size

Now we discuss the impact of the choice of y, and in particular how it relates
to the number of threads, m. Figure 2 shows that the proportion of accepted
steps increases with y. This happens because if the interval is larger then we
expect fewer steps to overlap interval boundaries due to longer periods of asyn-
chronous execution. The acceptance rate is affected by the batch size because
larger batches beget slower steps, leading to a higher chance that a step crosses
an interval boundary.

When y ≤ m it is very likely that no thread will compute more than one
accepted gradient in a given interval. Although the effect of this is comparable
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Fig. 3: The effect of y on the distribution and expectation of τ .

to synchronous parallel SGD with msynchronous = y (assuming step duration
variance ≪ mean step duration, which is always true in practice in a shared-
memory setting), we can expect improved throughput. This is because interval-
async execution reduces the average step duration, since instead of waiting for a
specific set of m steps to complete, we dispatch m steps and stop once y of them
have finished, resulting in a lower expected wait time, even when msynchronous =
y, i.e. accepting the same number of steps in each interval as the total number
of workers in a comparable synchronous execution.

Conversely, when y > m, it is guaranteed that at least one thread will produce
more than one accepted step in a given interval. However, the distribution of
staleness in this case is still lower than for a fully asynchronous execution, in
addition to there being a bound on maximum staleness: for any y,m, an accepted
step will always have τ ≤ y, and even when y > m we can expect a lower staleness
than that of fully asynchronous execution.

The relationship between the asynchronous interval y and the measured dis-
tribution of staleness, using 256 threads, is presented in Figures 3a and 3b. For
y ≤ m = 256, we get mostly uniform τ -distributions. This is because in these
cases, due to the behaviour described above, the first step has τ0 = 0, the second
will have τ1 = 1, and so on, because it is most likely that no thread computes
more than one step. The distribution is slightly non-uniform for y = 256 because
with a larger asynchronous interval it becomes more likely that steps that began
later will get a chance to finish. When y ≥ 512 we see skewed Gaussian distri-
butions but with a “fat” lower tail; the lower tail is due to the expected initial
sequence of τi = i for some number of steps at the beginning of each interval.

In order to compare the staleness distributions for interval-async execution
in Figure 3b to that of fully asynchronous execution, which is presented in the
same plot as a dotted line, the expected (mean) staleness for each interval size is
shown in Figure 3a. Note that the x-axis is logarithmic, hence a linear increase
in y causes E[τ ] to increase roughly logarithmically.
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4.1 Selecting y

The asynchronous interval size y influences the degree of asynchrony of the
execution, and therefore choosing a suitable value is important. If y is too low,
the throughput is throttled too much due to the increased proportion of rejected
gradients, in which case the convergence rate may be suboptimal. If y is too high,
convergence may take longer due to the impact of noise from stale updates.

Although we could keep y constant throughout an entire execution, it is far
better to dynamically adjust y so that we can maintain a good convergence rate
throughout. Since the degree to which the model is susceptible to noise induced
from high asynchrony and staleness is not constant, it is natural to respond with
adjustments to the interval, y. It turns out that the model tends to become
more sensitive to such “noisy” updates as it approaches convergence [4, 6]. This
can be seen intuitively: more precise control is required when we are close to a
minimum, otherwise we will keep overshooting.

y-decay: Since SGD benefits from high asynchrony initially but requires less
staleness later on in order to effectively reach some minimum, we propose a
simple scheme for adjusting y: initialise y ← y0 and gradually decrease it over
time. A simple decay strategy like this one is common in literature, for example
the popular approach of decaying the learning rate, η. Figure 3c shows an ex-
ample of how the distribution of τ changes as y is decayed over time, starting
from y0 = 256 and decrementing gradually over time. The median decreases in
accordance with y, but it is interesting to note that the lower quartile begins
to decrease even before y ≤ m = 128, demonstrating that Interval-Asynchrony
provides not only an upper bound of τ ≤ y, but also an overall shift in the
distribution. y-decay can be a very effective strategy, as we will show later, but
its performance does depend on the speed at which y is decreased.

Adaptive y through window-probing: Rather than relying on manual selection
of y-decay gradient, we propose an online adaptive method for selecting a suit-
able dynamic y at runtime. This approach employs a similar window-probing
parameter search method as used by ElAsyncSGD [3], using w as a configurable
window size, and p and x as the number of steps comprising a probing and an
execution step, respectively.

Alternating execution and probing phases occur. During an execution phase,
SGD is carried out as usual (following our Interval-Asynchronous semantics with
the current y). After x steps are accepted, a probing phase begins. The purpose
of a probing phase is to produce an estimation of which candidate interval size
y′ ∈ [y − kw

2 , y + kw
2 ) yields the best convergence rate at the current stage of

the execution. During this phase, we execute SGD for p steps at each candidate
y, keeping track of which yields the best convergence rate. This is then used for
the subsequent execution phase.
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5 Results & Evaluation

We now present an evaluation of our method compared to two asynchronous
baselines as well as a fully synchronous one, with the intention of evaluating the
training speed and accuracy, as well as scalability up to 128 concurrent threads.

We consider the use case of using SGDM (SGD with momentum [16], as
is industry-standard) to train two different convolution neural network models,
one for CIFAR10 and one for CIFAR100. For both datasets we use a LeNet5-
like architecture, consisting of the following layers: Convolution → Pooling →
Convolution → Pooling → Dense → Dense → Dense. We use an AMD EPYC
9754 128-core processor.

We compare our proposed Interval-Asynchronous execution (hereafter re-
ferred to in figures as IntAsync) to several baseline algorithms: fully asyn-
chronous with constant number of active threads (Async); fully asynchronous
with elastic parallelism due to the aforementioned window probing technique
(ElAsync); and synchronous parallel SGD (Sync).

Except where otherwise specified, we use η = 0.005 (learning rate), µ = 0.5
(momentum parameter), and ||Bi|| = 16 (batch size). We aim to select optimal
parameters for the elastic parallelism baseline to challenge our algorithm as
much as possible; to this end, we performed tests with many probing parameter
combinations, and determined the best to be a window width of 12, and 1024
and 8192 steps per probe and execution phase respectively.

5.1 Accuracy

In order to evaluate the efficacy of Interval-Asynchrony we compare the accuracy
it is able to achieve, as well as the time taken to reach it, to the two baselines.
This is displayed in Table 1 in which we report the best accuracy achieved across
all tested configurations (i.e. different numbers of threads) for each algorithm,
and the average accuracy across all thread count levels. To provide a meaning-
ful comparison we show the time at which each reached the highest accuracy
achieved by all algorithms (50.9% for CIFAR-10, and 5.1% for CIFAR-1003).
We also show the average time to reach this accuracy across all executions, but
it is important to note that the baselines Async and ElAsync only get to this
accuracy when using the minimal number of threads, 32. For this reason, we
omit those averages from the table. The average time for Sync on CIFAR-100
is listed as “>5400s” because we only ran each experiment for ninety minutes,
during which time Sync only reached the target accuracy in one instance. This
is different to the Async runs which did not get to the target accuracy: with
enough time, all Sync executions would reach the target, whereas many of the
Async experiments did converge, but to a lesser accuracy.

For both datasets, ElAsync and Interval-Async are both capable of achieving
a better accuracy than constant thread count Async with any tested number
3 The accuracy on CIFAR-100 is limited by the neural network architecture that we

use (LeNet5), and is consistent with previous works using LeNet5 [11].
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CIFAR-10 CIFAR-100
Accuracy Time to 50.9% Accuracy Time to 5.1%
Best Avg. Best Avg. Best Avg. Best Avg.

(Sync) 52.7% 52.7% 1071.5s 1760.7s 6.7% 6.7% 4485s >5400s
Async 50.9% 46.0% 43.9s * 5.1% 4.5% 251.8s *

ElAsync 52.6% 49.0% 54.4s * 5.5% 4.6% 264.5s *
IntAsync 51.8% 50.1% 30.0s 38.2s 5.4% 5.1% 193.3s 269.0s
*In these cases the target accuracy was never reached for some m.

Table 1: Accuracies achieved by each algorithm, and comparisons of training
time to common accuracies.

of threads. In the best case, ElAsync manages a slightly higher accuracy than
our method, because its best case is using only 32 threads maximum. Interval-
Async’s best accuracy of 51.8% was reached using 64 threads, hinting at its
better scalability. We can also see that Interval-Asynchrony delivers a signifi-
cantly faster training time in the best case. It is 32% faster than Async to reach
the threshold for CIFAR-10, and 23% faster for CIFAR-100.

5.2 Scalability

In addition to looking at the best case for each method, we observe the perfor-
mance as we increase the number of threads. Looking at Figure 4 we can see that
Async and ElAsync are only capable of reaching close to their best accuracy when
relatively few threads are used. On the other hand, our Interval-Asynchrony is
able to achieve close to its optimal accuracy across all tested numbers of threads,
in the majority of configurations. Hence, if we were to use Async or ElAsync for
a real-world training application we would have to carefully tune the number
of threads to make sure we get an acceptable balance between speed and accu-
racy, but by using Interval-Asynchrony we no longer need to worry about this.
This behaviour is shown both in Figure 4, as well as by observing the difference
between the best and average accuracies achieved by the different algorithms:
when these two values are closer, the accuracy degrades less with more threads.

Figure 4 further demonstrates the scalability of Interval-Asynchrony in its
second row of plots. In these, we select a certain threshold accuracy (different
to that used in Table 1, and different for each dataset) and present the time
each configuration takes to reach this, looking individually at each number of
threads. We select these thresholds (45% and 4%) such that for almost every
number of threads, every algorithm reaches at least this accuracy. We exclude
the synchronous results from these plots since its accuracy is unaffected by par-
allelism due to zero staleness, and its training time is so significantly higher than
the asynchronous algorithms that it cannot be shown on the same scale, as can
be seen in Table 1.

Figure 5 shows the accuracy and loss during the execution of each configura-
tion from Figure 4. Although the accuracy and loss metrics both provide some



Interval-Asynchrony 11

40%

50%

A
cc

u
ra

cy

CIFAR-10 4%

5%

CIFAR-100

32 64 96 128

20

30

T
im

e
to

T
h
re

sh
o
ld

CIFAR-10

Threshold = 40%

32 64 96 128

100

200

CIFAR-100

Threshold = 4%

Parallelism (# threads)

Async
ElAsync
IntAsync (decay, y0 = 64)

IntAsync (decay, y0 = 128)

IntAsync (probe, y0 = 64)

IntAsync (probe, y0 = 128)

Fig. 4: Scalability of best accuracy and time to reach threshold accuracies.

40%

50%

A
cc

u
ra

cy

m = 32 m = 64 m = 96 m = 128

0 100 200
0.5
1.0

L
o
ss

0 50 150 0 50 100 0 50 100

C
IF

A
R

-1
0

3%

4%

5%

A
cc

u
ra

cy

m = 32 m = 64 m = 96 m = 128

0 200 400
0.0

2.5

L
o
ss

0 200 400 0 200 400 0 200 400

C
IF

A
R

-1
0
0

Time (seconds)

Fig. 5: Accuracy and loss over time for each algorithm and thread count.

indication of model quality, the latter is less accurate. Our y-probing considers
loss rather than accuracy because it’s much faster to compute at runtime. While
lower loss does tend to imply better accuracy, we can see in Figure 5 that this is
not an exact correlation. For this reason, y-probing does not necessarily produce
the best value for y, but as shown in Figure 4 it is still an effective strategy.

The general trend is an initial increase in speed w.r.t. parallelism due to
increased throughput without yet too much staleness, followed by a slowdown
as each algorithm is no longer able to make good use of the additional threads.
For CIFAR-10, we see the two Interval-Async executions with initial y0 = 64
excelling in terms of scalability, tending to continue speeding up as more threads
are available. At the other end of the spectrum, Async struggles to speed up
once more than 64 threads are used, and at 128 threads is not even capable of
reaching the threshold accuracy. Note that although ElAsync’s scalability looks
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promising since it is sometimes faster than Interval-Asynchrony, in these cases
(and indeed in almost every case) it does not train the model to have as high an
accuracy as Interval-Asynchrony. An initial fast increase in accuracy (even up
to the threshold as shown here) is not always beneficial in the long run.

According to Figure 2, for the values of y we are using we should expect
overall less than 50% of the total steps to be accepted, reducing the throughput
by more than a half. Despite this, the total training time does not double, em-
phasizing that our method substantially increases the statistical efficiency, more
than making up for the lower throughput. This improvement is due to lower
staleness on average, as well as an absolute upper bound, as shown in Figure 3b.

5.3 Efficacy of Adaptive Interval Size

So far we have mostly considered all configurations of Interval-Async together,
in order to discuss the method in general. We now provide a discussion of our
two proposed techniques for adjusting the interval size, y. In Figures 4 and 5 we
experiment with both y-decay and y-probing, and for each of these methods we
consider initial interval sizes y0 ∈ {64, 128}. For y-decay, we decrease y by 1 per
every 4,096 accepted steps.

It turns out that Interval-Async SGD execution is sensitive to the initial y.
Although the probing technique is intended to discover close to the best y, prob-
ing is restricted to a window and therefore will only find locally optimal values. If
the initial value is so large that it causes significant inaccuracy, the probing may
not be able to rectify this fast enough to be effective. A broader search strategy
could improve y-probing results, at the expense of more time spent searching.
More efficient searching thereof would make for interesting future work.

We propose y0 = 64 as a good balance between training speed and scalability,
but note that a method for picking a better y0 could provide more consistent
scaling at high thread counts. Although a suboptimal y0 can have negative con-
sequences on training time, it remains faster than the baseline algorithms. The
maximum accuracy achieved also beats the baselines in almost every case.

6 Conclusions & Future Work

We demonstrate that our algorithm can reach a consistently higher accuracy
than the baselines across two challenging datasets, suggesting that this trend
holds in other settings too. Our method becomes increasingly useful as more
threads are used: at higher numbers of threads the model accuracy reached
stays constant, not suffering too much from asynchrony induced noise, whereas
the baseline asynchronous algorithms experience substantially worse accuracy.
Even more importantly we show that our method is capable of effectively making
use of additional processors to reduce the time taken to reach a certain model
accuracy. Our method achieves a consistently high accuracy, regardless of the
number of threads used, by managing the distribution of staleness through self-
contained intervals of asynchrony, and it does so at a competitive speed since
the enforcement of these intervals does not sacrifice throughput too much.
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Although we propose an effective window-probing approach for automatically
controlling the interval size, it is often sensitive to the initial size, y0. Further
work in this area is needed in order to design a more effective automatic controller
for this parameter, for example incorporating a heuristic method to determine
a suitable y0. More generally, there are a number of other parameters for which
online control is conceivably beneficial to training performance. These are, at
least: batch size, learning rate, thread count, and asynchronous interval size.
An interesting piece of further work would produce a holistic controller for such
parameters.
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